Trends in Amateur Radio

It’s always been accepted that one of the attractions of amateur radio was that it involved the building of kits; if you needed (or wanted) a better or more specific transmitter, receiver or transceiver but couldn’t afford to purchase one from your local retailer, you bought one in kit form and built it yourself.
Kits were ordered over the phone and posted to you. Some were better than others but all had potential risks involved, such as the odd missing component.

The Elecraft KX1 kit came professionally packed with a great instruction manual.

This kit from Virgil Stamps at http://www.hfprojects.com is a good example of a well-produced kit that involves soldering all the components into place in the PCB.

And it wasn’t only on the electronics front that you could heat up your soldering iron and get busy; making a suitable antenna was also a huge part of the hobby.

My homebrew 6m dipole strung up and ready for action.

Baluns are also popular construction projects with homebrewers.

I wound the entire length of coax on a piece of PVC piping I had in my workshop.

Of course, you didn’t have to stick with kits if you needed to construct a radio; you could always build one from scratch with components you happened to have in your proverbial junk box.

I built this regenerative receiver using what I happened to have on hand at the time.

Test equipment is also easy to build from kits.

QRPometer on the left, Hendricks dummy load/power meter on the right.

I have noticed a trend beginning to appear in the world of amateur radio, and that’s a swing away from ‘melting solder’. I first noticed this with the advent of the Elecraft KX3 a few years ago. For the first time this world leader in kit production began marketing a rig that only required mechanical construction; all the electronics came pre-manufactured and only needed slotting into place in the enclosure, which needed first to be put together by the ham. This was due to the high number of surface mount components present.

And now Virgil Stamps, proprietor of the beautifully designed and manufactured HF linear amplifier that is aimed at the SOTA and WWFF fraternity (http://hfprojects.com/) has gone this route with the launching of his latest offering, the HFPacker Amp MiniHFPA2. By all accounts it looks like this new trend in amateur radio is here to stay, but as long as it helps get more people on air, that’s sure to be a good thing.

Advertisements

First portable operation with the Packer 6m amplifier

I decided to take the bull by the horns and activate a SOTA summit on 6m only, using my newly-built Packer 6m 30W linear amplifier. The summit I chose was Tamborine Mountain, VK4/SE-059.

My rig this time was the Yaesu FT-817 and the antenna was a homebrew 6m dipole, strung up as a sloper.

The rig connected to the amp and the LDG antenna tuner. The battery is a 7a/h gel cell. The power cords are routed through a SotaBeams 4-Way distribution box.

As soon as I put out my first call, the game was on. In the space of a short 30 minutes I had made 15 contacts. Wonderful.

The action came thick and fast and the view was excellent.

One aim of the activation was to test the amp, especially how long the battery would last as it draws around 6A.

At the start of the activation my battery had 12.58V, and at the end, 12.49V. That’s pretty incredible, especially seeing I was operating almost continuously. Input power from the radio was 1W and output 30W.

Another test I carried out (with Peter VK4JD) was to get an idea of the difference the amp made to an actual QSO. On bypass, with 1W, my signal was down some 20dB. So the amp was doing a fine job.

Building a VHF Packer 6m Amp

I was given this kit by Wal, VK4CBW, as he had purchased it some years ago and knew he would not get around to building it.

The kit was produced and sold by http://www.hfprojects.com in America and came well packaged in a series of sealed plastic packets. Everything including the enclosure and heavy duty heat sink were included.

This little amp requires 1W drive for 30W output and features a Mitsubishi RF mosfet module mounted on the heatsink. There is also a filtered Anderson Power Pole DC input that takes 12V at around 6.2A. And measuring only 5.25 x 3 x 3 inches and weighing less than 1 lb, I figured it would be perfect for SOTA or VKFF operations.

I started my working on the well-made PCB.

Populating the PCB

Then I began making the power cable assembly, the RF cable assembly and the switch cable wiring.

The cables were installed inside the top enclosure case.

I had to fabricate a make-shift mounting plate for the Anderson Power Poles as this was missing from the kit. It has been ordered but hasn’t arrived yet. Eager to avoid delays so I could catch the 6m band opening, I made a replacement out of PCB material.

This isn’t perfect but it would do until the genuine item arrives in the post.

After a little fiddling it went in well and did the job.

The mounting plate in place.

Next, the circuit board and amp module were installed and the initial check carried out.

Ready for alignment and the first smoke test.

The bias current had to be set to 0.7A if the amp is to be used for SSB work, or 0.5A for FM. I chose the former.

The bias current set correctly.

I skipped the next step, which was to align the low pass filter as I don’t have the correct instrumentation. But as I had constructed coils L1 and L2 according to the instructions, this wouldn’t be too critical.

The power output test was more important. I connected the amp up to my Yaesu FT-817 (with power wound back to 1W) and attached my homebrew dummy load and an SWP/Power meter. RF output was shown to be a mere 16W. So I flicked the bypass switch and measured the output as 1W with an SWR of 1.0:1. All good there.

Tweaking the coils of L1 and L2 soon produced the required 30W, so it was time to disconnect the dummy load and attach my 6m monoband dipole antenna.

My homebrew 6m dipole strung up and ready for action.

Keying down produced the power output reading I was after.

RF out was now 30W with the SWR indicated as around 1.7:1. Not bad at all.

Next, I attached my LDG auto tuner to the chain and was ready for an on-air test.

All set up and ready for action.

The result was most pleasing. I worked a bunch of VK7 stations (SSB and CW) and well as VK2s and 3s. I am in business and ready to take advantage of the summer openings.

Oh, and all reports received were most favourable. Nice clear signals, good reports and clear audio were what most operators reported back: they were all impressed that I was only using 30W – most stations were in the 200-400W range.